
THE PROFILED CYLINDRICAL SLIDEWAY

Load capacity and design

by

Lars Holmdahl

Report number: 1985.05.15

Division of machine elements

Chalmers University of Technology

Göteborg Sweden

This is an updated version of the original report from May 1985. The original work was done two years prior to
publication, as described in the report. In this 2nd edition typos have been corrected, the layout has been mod-
ernized, some plotted curves have been added to the original, and mathematical expressions have been ex-
panded and rewritten using Mathcad.

Today, some 32 years later, it is easy to forget the conditions under which we worked then. The report was
written on an IBM typewriter (do you remember Tip-Ex?) with interchangeable balls (for changing typeface).
Computing, if you could afford it and had an account at the University computer center, was done on mainframe
computers (IBM 360). You paid for cpu-time. Jobs were batched. No graphical interface. Input was 80 positions
per line, etc. The School of Machine Design and Naval Architecture had just acquired a mini computer from
Norsk Data. That came in handy for writing the formulas.

The numerical calculations in the original report were done on a Texas InstrumentsTi59 programmable calcu-
lator. The closed form analytical solution was found after a week’s daily work with pen and paper by aid of,
always dependable, Gradshteyn and Ryzhik: Table of Intergrals, Series, and Products.

Göteborg May 2015
Lars Holmdahl, Dr.-Ing.



ABSTRACT

Only one solution to the load capacity problem of a profiled cylindrical slideway is
given in the literature; that of Prof. Dr.-Ing. H. Brendel. Unfortunately the one-
dimensional analytical solution given by Prof. Brendel is erroneous due to a math-
ematical error in his first equation.

The correct solution is given in this report. The closed form solution is compared
with both a one-dimensional numerical solution and a two-dimensional finite-
difference solution. The agreement is good.

Oil consumption, temperature rise and friction are briefly discussed. Design rules
based on actual engineering experience are given.



FOREWORD

In the summer of 1983 I received a telephone call from the manager of a factory
producing wood working machines. They had recently designed and started pro-
duction of slider crank type briquette machines and now the first two machines had
failed through galling in the slider bearing after less than 200 hours of service time.

The machines of the competitors were basically of the same design. The slideways
were boundary lubricated and wore out in about 1000 hours.

Obviously the design would be greatly improved if the bearing could be made to
operate in the hydrodynamic regime - but how?

A brief search in the literature was of no help so a first crude theory was compiled.
In parallel to this a thorough literature search was undertaken during which the
theory of Prof. Brendel was found. A close examination revealed that his theory was
erroneous. Brendel had erred in his first equation. Therefore the present theory was
compiled.

In the fall of 1984 when the first two modified machines surpassed 10 000 hours of
service time, it was felt that the profiled cylindrical slideway had proved to be such
a great asset to the design engineer that this report should be written.

Göteborg May 1985

Lars Holmdahl
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NOTATION

D bushing ID

d slider, largest diameter

L length of one profiled section

cL length of one cylindrical section

t profile depth (half the difference between the sliders larg-
est and smallest diameter)

r=d/2 radius

v sliding velocity

η dynamic viscosity
bearing clearance (nondimensional)

e slider radial displacement (eccentricity)
relative eccentricity

profile parameter (nondimensional)

θ circumferential angle
minimum film thickness at the rear end

W0 load capacity of one profiled section (nondimensional)
load capacity of one profiled section


D d

d


D


2 e

 d




2 t

 d
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h0
 d

2
1  cos ( )( )



W  v d
L

 d







2

 W0
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INTRODUCTION

Up until now slideways have been made to operate within the boundary lubrication
regime. By giving the mating surfaces a slight waviness it has been possible to
achieve mixed lubrication. Mixed and boundary lubricated bearings wear out fairly
fast. The maximum nominal pressure is lower and the friction higher than in a hy-
drodynamic bearing. The boundary lubricated bearing is also sensitive to contami-
nations in the oil e.g. dust and wear particles.

In order to avoid the drawbacks of traditional slideways one can use new machine
elements such as roller bushings or make hydrodynamic slideways.

Hydrodynamic slideways have been sparsely treated in the literature and almost
only in the last decade. The first article was published in 1952 (1). Maybe it is this
lack of literature and design rules that is especially responsible for the hydrodynam-
ic slideway not being used in spite of its advantages:

a) high bearing stiffness (1),(2).

b) low production cost

c) easy to employ (no adjustments or fine tuning)

d) tolerates high nominal pressure

e) very low wear

f) very high transient capacity due to squeeze-effect

This report intends to give a simple theory for the load capacity of the hydrodynam-
ic cylindrical slideway when the slider is parallel to the bushing and when it is in-
clined/tilted a small angle.
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LOAD CAPACITY
One conical section, parallel axis

A slider moves in a bushing, figure 1. When there is no load on the slider, it is coaxi-
al to the bushing. Now apply a load W on the slider, figure 2, this moves the slider
radially downwards until the now unsymmetrical pressure distribution balances the
force W.

Figure 1. A profiled cylindrical slider in a bushing

Figure 2. Load and load reaction on one conical section

If we ignore any circumferential oil flow, that is: if the oil flows in a straight line
through the bearing, its load capacity can be calculated using the theory for a plane
pad bearing of infinite width. For a pad bearing of infinite width the load capacity
per unit width is (3):

With = ℎ = ⋅ (1 − cos ) = ⋅2 (1 − cos( )) = 1 (1 − cos( ))
We can rewrite the expression for F0

Integrating around the circumference, figure 2, we get the load capacity W of one

F0 6  v
L
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





2

1 2 





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profiled section:

This can be written

Numerical solutions of W0n for different non dimensional profile parameters κ are
plotted as functions of relative eccentricity ε in figure 3, below.

Figure 3. Numerical solutions of W0 for different non dimensional profile parameters κ
are plotted as functions of relative eccentricity ε

There is an analytical closed form solution to W0 that gives identical solutions to the
numerical solution.
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The last part of the solution is the same as the second part of the solution given in
ref (4). The first part is not.

It is informative to view W0 as a function of κ for different ε, figure 4.

Figure 4. The nondimensional load capacity W0 increases with relative eccentricity ε

It is evident from the curves that, from a load capacity perspective, for every κ there
is an optimal ε. Furthermore κ should always be less than one. This leaves us with a
rather narrow band of alternatives. Figure 5 gives a closer view.

The original set of curves (from the original 1985 version of this report) showing the
dimensionless load capacity W0 as a function of the nondimensional profile parame-
ter κ and the relative eccentricity ε is shown in diagrams 1 and 2 at the end of the
report.
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Figure 5. A closer look of W0 for different non dimensional profile parameters κ as func-
tions of relative eccentricity ε

Finding optimum κ and ε

For a plane pad bearing we have maximum load capacity for

ℎ + 1 = 2.2
Which in our case becomes

ℎ = 2⋅ (1 − εcos( )) = 1 − εcos( ) = 1.2
This hints at a possible connection between optimum parameters that looks like thisϰ = z(1 − ε)
If we plot the nondimensional load capacity W0 for 0.6 < ε < 0.95 and 0 < z < 6, we
see that there is an optimum range of 1 < z < 1.8, figure 6. This gives us optimum
profile parameter as a function of relative eccentricity, figure 7.
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Figure 6. Optimum range z is 1-1.8

Figure 7. Optimum profile parameter κ as a function of relative eccentricity ε
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Tilting

Figure 8. A tilted conical section

In practical applications the slider will often be tilted. The geometry for this case is
given in figure 8. The leading and trailing corners are moved rα and Lα/2. The con-
ditions after tilting an angle α is given subscript t. We have

Using that α is a small angle and neglecting α2 we get

An interesting question is how much the slider can tilt. If we have one conical sec-
tion only (no cylindrical section), then max tilt is

α = ±t/L

If however, the slider inside the bushing is of length n*d, where typically n ≈ 2 or
larger, while L is a fraction of d, say d/L ≈ 10, and 0.002 < ψ < 0.01, say ψ = 0.004,
then we get a much lower value

α = ψd/nd = ψ/n = 0.004/2 = 0.002 [radians]

The possible tilt is thus very small. For the remainder we assume that Lα is a frac-
tion of profile depth t, so that

Lα = ξt

Film thickness at the trailing edge and profile depth at tilt can now be written

h0t h0
L 

2
cos ( ) cos ( ) r  sin ( ) cos ( ) h0h0

tt t
L 

2
cos ( ) r  sin ( )

L 

2
cos ( ) r  sin ( )





cos ( ) rr

h0t h0
L 

2
cos ( ) h0h0

tt t L  cos ( ) tt
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A small rewriting of the force F0t of the tilted case yields

The load capacity is, as before

Which as before becomes

It is beyond the capacity of this author to find a closed form solution to this integral.
A numerical solution can be found by expanding the expressions for profile depth
and trailing edge film thickness, yielding

Visual inspection shows that by putting ξ = 0 the expression reduces to W0, the case
without tilt.

In order to compare with previous results we create the quotient tilted and non-
tilted slider.
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0.8 < ε < 1

0.05 < κ < 1

-0.5 < ξ < 1

Plotting Q0 as a function of tilt parameter ξ for relative eccentricities ε = 0.8 and dif-
ferent profile depth parameters κ, we see that tilting the slider reduces load carrying
capacity if the tilt angle α > 0, and may increase load capacity if α < 0, figure 9.

Figure 9. W0t for tilted slider divided by W0 for non-tilted slider. Tilt parameter x = ξ

A reduction of load capacity due to tilt, may be compensated by a slight increase in
eccentricity.
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Figure 10. Nondimensional load capacity as a function of relative eccentricity ε for κ = 0.5
and different tilt

Figure 11. Nondimensional load capacity as a function of relative eccentricity ε for κ = 0.1
and different tilt
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Figure 12. Nondimensional load capacity as a function of nondimensional profile depth.
Relativ eccentricity 0.9. Zerro tilt is fat black dotted line.

Originally, in this report, dimensionless load capacity W was calculated for different
degrees of tilt; αL/t and shown as an addendum to the report in diagrams 3 through
9. These plots have been removed from this, the 2nd edition of the report. They do
not give much useful information and besides, if needed, the formulas given can be
immediately used for example in Mathcad.
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The influence of the cylindrical section (parallel axis)

In the analysis above, the pressure at
the end of the conical section was as-
sumed to be zero. In practice however
the conical section is followed by a
cylindrical one. This means that, as
long as the slider and bushing are par-
allel, the pressure is not zero at the
end of the conical section but falls
gradually as the oil flows along the
cylindrical section.

The load capacity for this case is not evaluated. However, we can note that a pad
bearing that consists of a tapered part followed by a flat part, a so-called tapered-
land pad bearing, of equal length to a tapered pad bearing has somewhat (+16%)
higher load capacity at the optimum proportions of c = 0.2 (figure 13). For c close to
this value, the tapered-land bearing has about the same load capacity as a tapered
bad bearing of equal length.

Cylindrical areas are useful for providing landing and starting zones dominated by
boundary lubrication and for providing squeeze effect for handling dynamic loads.

Figure 13. Conical section followed by a cy-
lindrical section
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CIRCUMFERENTIAL FLOW

In reality there is of course a circumferential flow from the high pressure side of the
bearing towards the-low pressure side. This flow was neglected in the formulas
above. In order to get an estimate of the error introduced by neglecting the side
flow, the Reynolds equation:

was solved with a finite difference method using a 19*61 mesh. With the pressure p
known, the load capacity W was calculated according to:

In this case the pressure distribution depends also upon the relation between the
length of the profiled section and the slider diameter. Therefore a new dimension-
less group that does not contain the length L is used:

The non-dimensional load capacity W1 is shown in diagrams 10 through 18 in the
addendum.

At eccentricity ε = 0, there is no circumferential pressure gradient and thus no side
flow. As ε grows, so do the pressure gradient and the side flow. The 2-dim solution
therefore always gives a smaller value than the 1-dim solution.

A comparison of 1-dim to 2-dim solution shows that for short sections, equal to or
smaller than 0.1d there is virtually no difference between the two solutions, indicat-
ing that side flow is negligible at small L/d. Even for L/d = 0.3 (and 0.2 < κ < 5) the
difference is of little practical importance since a small increase in eccentricity com-
pensates for the difference in load capacity.

It is at large ε and small κ that the difference is at its largest. Table 1 shows upper
limits in relative difference between the closed form solution and the numerical 2-
dimensional solution.

Table 1. Limits to relative difference between 1-dim and 2-dim solutions for 0.5 < ε < 0.95

κ

0.01 0.02 0.05 0.1 0.2 0.5 1 2 5

L/d

0.1 0.9 0.9 0.9 0.95 0.95 0.95 0.95 0.95 0.95

0.3 0.7 0.7 0.7 0.7 0.75 0,8 0.9 0.9 0.9

0.5 0,7 0.8 0.85 0.9

The table should be read like this: At for example L/d = 0.1 and κ = 1, the 2-dim solu-
tion is within 0.95 of the 1-dim solution.
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OPTIMIZING

Minimum film thickness puts an upper limit to eccentricity. At small eccentricities
the load capacity will be insufficient. A suitable choice is:

0.7 < ε < 0.95

Within this range we want the load capacity to be as large as possible and friction
low. This is achieved if:

0.1 < κ < 0.5

A large length of L a conical section gives high load capacity and low friction, but
may interfere with other purposes, such as a need for several cylindrical sections
and balancing of forces. Side flow will increase with L. A reasonable limit is

L/d < 1

We have now established limits to ε, κ and L/d.
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OIL CONSUMPTION, TEMPERATURE RISE AND FRICTION

The oil consumption can be estimated with the method outlined in (4) or standard
engineering formulas. The temperature rise is negligible in most cases since the slid-
er speed is low and the bearing surface large. The friction can be calculated in the
same way as the load capacity utilizing pad bearing theory.

Friction

For a pad bearing of infinite width the friction force per unit width is (3):

The friction force then becomes

Summing around the circumference

It is now possible to formulate a friction number

Where, as before

After abbreviations this becomes

Where

The friction number can be written as a product of case specifics and a dimension-
less function

The general friction number μ0 is easily calculated, figure 14.
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Figure 14. Friction number μ0 as a function of eccentricity ε, for κ = 0.1 and κ = 1

To get a feel for the friction number, let us assume that ψ = 0.003, and that d/L = 3.
Then the coefficient of friction is shown in figure 15.

Figure 15. Friction number for ψ = 0.003 and d/L = 3 as a function of eccentricity ε and κ

And finally, by plotting friction number μ0 as a function of kappa for different ec-
centricities we see that minimum friction is achieved for 0.1 < κ < 1

Figure 16. Minimum friction is achieved for 0.1 < κ < 1
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THE INFLUENCE OF OIL GROOVES

In order to supply the bearing with oil, grooves are machined in the bushing. When
the load acts in one plane only it is good practice to have two oil grooves, one on
each side of the load plane, opposed to each other, as in fig 18. In this case the influ-
ence on the load capacity due to zero pressure at the oil grooves is practically negli-
gible when the length of the profiled section is equal to or less than the slider diame-
ter as can be seen in diagrams 19 and 20.

Figure 17. Bushing with oil groove

In this case the influence on the load capacity due to zero pressure at the oil grooves
is practically negligible when the length of the profiled section is equal to or less
than the slider diameter as can be seen in diagrams 19 and 20.
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DESIGN RULES

From the above, general fluid film bearing theory and practical application the fol-
lowing design rules have been found to apply:

a/ the relative clearance ψ should be as small as machining and/or thermal expan-
sion permits

b/ the profiled sections should be long, but considerably shorter than the slider di-
ameter.

3 < d/L < 10

c/ the smallest film thickness h0 should be greater than 3-5 Ra of the mating surfaces.
This gives an upper limit to ε:

max ε = 1-2 h0 / (ψd)

d/ the profile parameter κ must be less than one. Optimum:

0.1 < κ < 0.5

e/ a suitable relation between the length L of the profiled section and the length cL
of the cylindrical section of the slider is in the range:

0.2 < c < 0.5
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